Battery-powered, Wireless MEMS Sensors for High-Sensitivity Chemical and Biological Sensing
نویسندگان
چکیده
Researchers at Oak Ridge National Laboratory (ORNL) are developing selectively coated cantilever arrays in a surface-micromachined MEMS process for very high sensitivities in chemical and biological sensing. Toward this end, we have developed a one-dimensional (1-D) 10-element microcantilever array that we have coated with gold for mercury sensing and palladium for hydrogen sensing. Ultimately we will coat each element with a different coating. Currently, measurements have been performed using a companion analog 1.2-μm CMOS eight channel readout chip also designed at ORNL specifically for the microcantilever arrays. In addition, we have combined our sensors with an ORNL-developed RF-telemetry chip having on-chip spread spectrum encoding and modulation circuitry to improve the robustness and security of sensor data in typical interferenceand multipath-impaired environments. We have also provided for a selection of distinct spreading codes to serve groups of sensors in a common environment by the application of code-division multiple-access techniques. Our initial system is configured for use in the 915-MHz Industrial, Scientific, and Medical (ISM) band. The entire package is powered by four AA batteries. 1: Integrated Microsensors Researchers at Oak Ridge National Laboratory and the University of Tennessee have been actively involved for years in various novel sensor developments and highly integrated custom analog integrated circuit development for large particle-physics experiments, some having over 300,000 channels of integrated CMOS electronics. More recently, we have begun to marry the two areas of research into integrated sensors and wireless telemetry. The first section describes selectively coated microcantilevers, a sensor technology that exhibits a great deal of promise for low-power sensing of environmental contaminants. The second section presents the present work to date on the wireless telemetry initiative. 2: Selectively-Coated Microcantilevers
منابع مشابه
Couple Stress Effect on Micro/Nanocantilever-based Capacitive Gas Sensor
Micro/nanocantilevers have been employed as sensors in many applications including chemical and biosensing. Due to their high sensitivity and potential for scalability, miniature sensing systems are in wide use and will likely become more prevalent in micro/nano-electromechanical systems (M-NEMSs). This paper is mainly focused on the use of sensing systems that employ micro/nano-size cantilever...
متن کاملLaser Spectroscopic Trace-Gas Sensor Networks for Atmospheric Monitoring Applications
Laser-based atmospheric trace-gas sensors have great potential for long-term, real-time, maintenance free environmental monitoring in distributed Wireless Sensor Networks (WSN). We are developing a laser based chemical sensing technology with wide-area autonomous wireless sensor networking as the final target. Our prototype sensor measures atmospheric oxygen concentration in the form of a batte...
متن کاملTopology Control in Wireless Sensor Network using Fuzzy Logic
Network sensors consist of sensor nodes in which every node covers a limited area. The most common use ofthese networks is in unreachable fields.Sink is a node that collects data from other nodes.One of the main challenges in these networks is the limitation of nodes battery (power supply). Therefore, the use oftopology control is required to decrease power consumption and increase network acce...
متن کاملPassive wireless MEMS microphones for biomedical applications.
This paper introduces passive wireless telemetry based operation for high frequency acoustic sensors. The focus is on the development, fabrication, and evaluation of wireless, battery-less SAW-IDT MEMS microphones for biomedical applications. Due to the absence of batteries, the developed sensors are small and as a result of the batch manufacturing strategy are inexpensive which enables their u...
متن کاملEEQR: An Energy Efficient Query-Based Routing Protocol for Wireless Sensor Networks
Routing in Wireless Sensor Networks (WSNs) is a very challenging task due to the large number of nodes, their mobility and lack of proper infrastructure. Since the sensors are battery powered devices, energy efficiency is considered as one of the main factors in designing routing protocols in WSNs. Most of energy-aware routing protocols are mere energy savers that attempt to decrease the energy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999